On Lipschitz-free spaces over spheres of Banach spaces
نویسندگان
چکیده
We prove that, for each Banach space X which is isomorphic to its hyperplanes, the Lipschitz-free spaces over and sphere are isomorphic.
منابع مشابه
Lipschitz - free Banach spaces
We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملLipschitz Structure of Quasi-banach Spaces
We show that the Lipschitz structure of a separable quasi-Banach space does not determine, in general, its linear structure. Using the notion of the Arens-Eells p-space over a metric space for 0 < p ≤ 1 we construct examples of separable quasi-Banach spaces which are Lipschitz isomorphic but not linearly isomorphic.
متن کاملOn Fréchet differentiability of Lipschitz maps between Banach spaces
A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...
متن کاملOn the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces
We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2021.125093